
Genetische Untersuchung der Trockentoleranz von Tannen-Saatgutbeständen in Tirol

Jonathan Feichter & Berthold Heinze Genomforschung

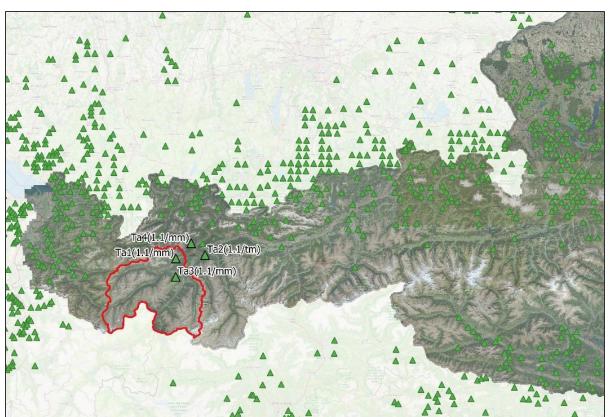
Tannensymposium Landeck

02. Oktober 2025

Lokale Anpassung

Lokale Genotypen haben höhere Fitness als fremde, weil sie besser an die lokalen Bedingungen angepasst sind.

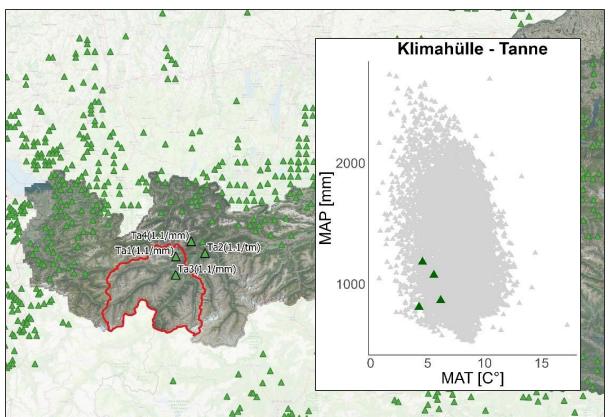
Ausgangslage



Wuchsgebiet 1.1 (1.2)

- Kontinentales Gebirgsinnenklima
- Trockenster Bereich des österreichischen Alpenraums
- Starke Temperaturschwankungen
- Allseitige Abschirmung durch gestaffelte Gebirgskämme

4


Saatguterntebestände Tanne in WG 1.1

Stichprobenpunkte der Waldinventur mit Tanne

Saatguterntebestände Tanne in WG 1.1

Stichprobenpunkte der Waldinventur mit Tanne

Ausgangslage

- Randbereich klimatischer/geografischer Verbreitung
- Räumliche Isolation
- Fragmentierung

Fragestellungen:

- Lokale Anpassung?
- Genetische Diversität?
- Eignung als Saatgutquelle aus genetischer Sicht?

Hinweise aus der Literatur

Untersuchungen über die genetische Variation der Weisstanne (*Abies alba* Mill.) unter dem Aspekt der *in situ* Erhaltung genetischer Ressourcen in der Schweiz

Abhandlung

zur Erlangung des Titels

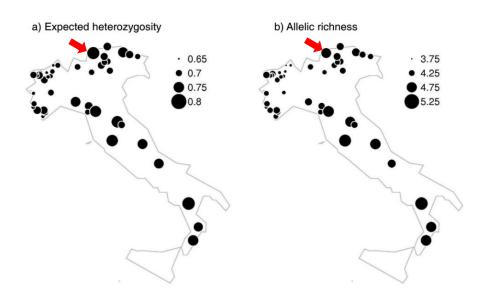
Doktor der Naturwissenschaften

da

Eidgenössischen Technischen Hochschule Zürich

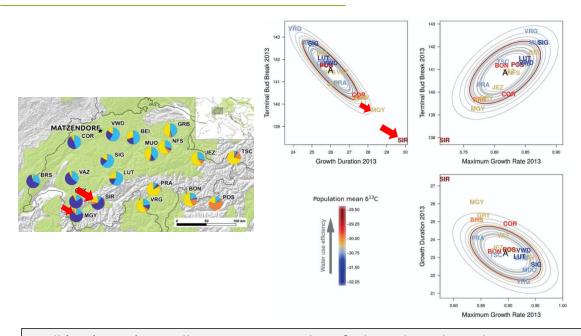
vorgelegt von

Erwin Hussendörfer


Diplom-Forstwirt

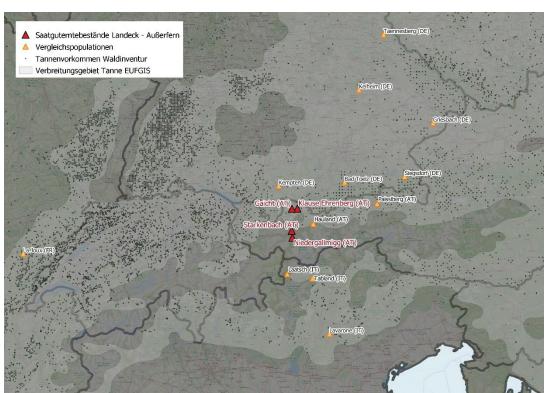
Hussendörfer (1997) – findet Tendenz zu höherer genetischer Diversität im Alpenraum im Vergleich zum Flachland. Voraussetzung für das Überleben in komplexer/heterogener Umwelt?

Hinweise aus der Literatur



Belletti (2017) – Inneralpine Population im Vinschgau hoch divers, entgegen des geographischen Trends

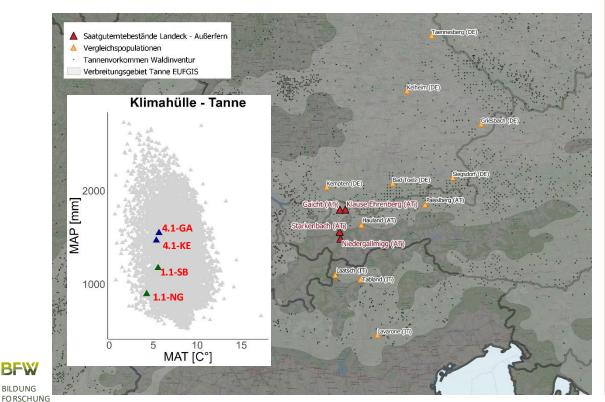
Hinweise aus der Literatur


Csilléry (2020) – Walliser Tannen treiben früh und wachsen langsam im Herkunfstversuch. Mutterbäume haben erhöhte Wassernutzungs-Effizienz.

→ Lokale Anpassung

Versuchsdesign: Analyse von Kandidatengenen

Genotyp-Phänotyp Assoziation


- 4 Saatguterntebestände
- 2 trocken (1.1.) / 2 feucht (4.1)
- 200 Individuen
- 159 SNP-Marker in Kandidatengenen

Genotyp-Umwelt Assoziation

- Zusätzlich 8 Vergleichsherkünfte
- 384 Individuen

Diversität mit "neutralen" Genen

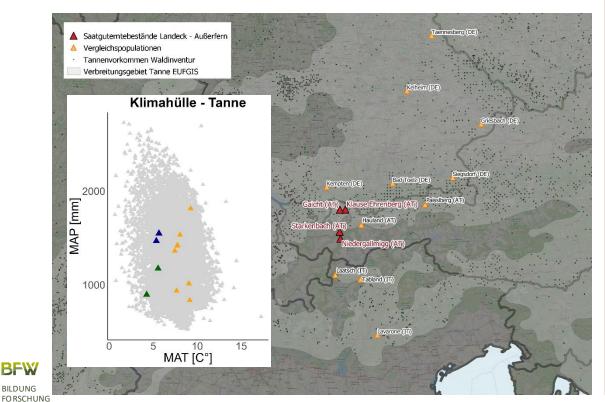
Versuchsdesign: Analyse von Kandidatengenen

BFW

BILDUNG

WALD

Genotyp-Phänotyp Assoziation


- 4 Saatguterntebestände
- 2 trocken (1.1.) / 2 feucht (4.1)
- 200 Individuen
- 159 SNP-Marker in Kandidatengenen

Genotyp-Umwelt Assoziation

- Zusätzlich 8 Vergleichsherkünfte
- 384 Individuen

Diversität mit "neutralen" Genen

Versuchsdesign: Analyse von Kandidatengenen

BFW

BILDUNG

WALD

Genotyp-Phänotyp Assoziation

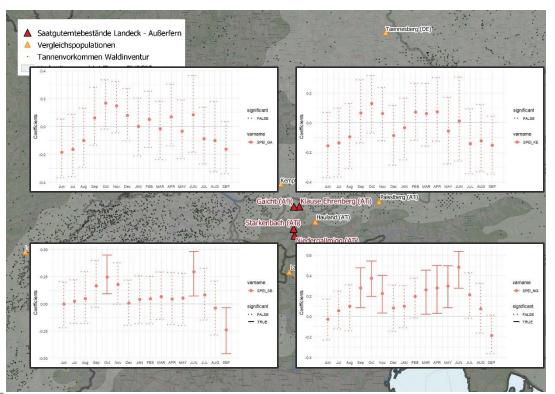
- 4 Saatguterntebestände
- 2 trocken (1.1.) / 2 feucht (4.1)
- 200 Individuen
- 159 SNP-Marker in Kandidatengenen

Genotyp-Umwelt Assoziation

- Zusätzlich 8 Vergleichsherkünfte
- 384 Individuen

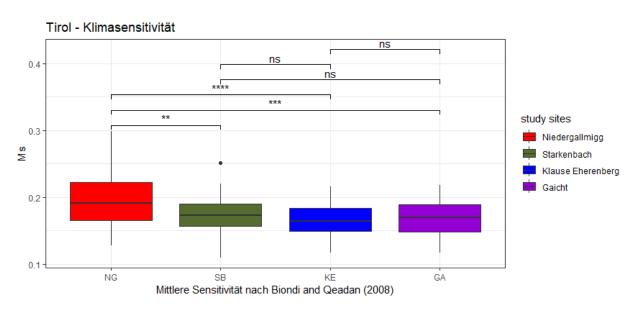
Diversität mit "neutralen" Genen

Probenahme



Klima-Wachstums-Beziehungen

Korrelation des jährlichen Zuwachses mit Standardisierten Niederschlagsevapotranspirationsindex (SPEI)

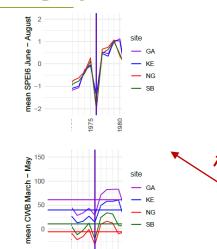

Außerfern:

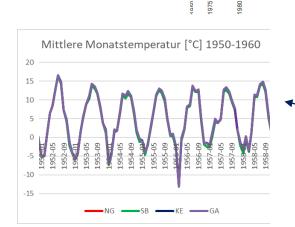
Keine signifikante Korrelation

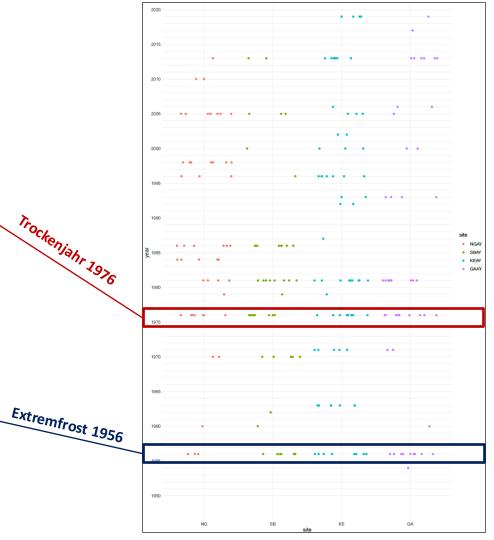
Landeck:

Signifikante Korrelation mit SPEI des Frühjahres und Herbst des Vorjahres

Klimasensitivität

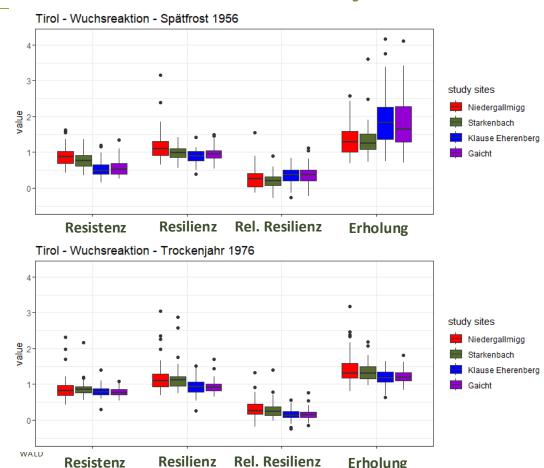

Varianz der Jahrringserien als Maß der klimatischen Sensitivität


Der inneralpine Bestand Niedergallmigg weist signifikant höhere Sensitivität auf!



Identifikation von Zeigerjahren

Rückgang des Zuwachses auf <u>Bestandesebene</u> infolge von <u>klimatischen</u> <u>Extremjahren</u>



BILDUNG FORSCHUNG WALD

Wuchsreaktion in Extremjahren

Vergleich des Zuwachses im Extremjahr mit 4-jähriger Referenzperiode vor und nach dem Ereignis

→ Im Durchschnitt höhere Dürre- und Spätfrostresistenz auf den inneralpinen Standorten

Genetische Grundlage für Dürre- und Frostreaktion?

Suche nach Zusammenhängen von Genvarianten und Wuchsreaktion

SNP -> Punktmutation

Ind1: ...GCAACGTTAGA...

Ind2: ...GCAGCGTTAGA...

Ind3: ...GCAACGTTAGA...

"Köder" welche bestimmte Genabschnitte herausfischen

Entwicklung neuer Hyb-Seq "<u>baits</u>" für die Hochdurchsatzsequenzierung

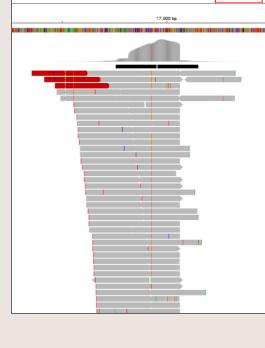
BILDUNG FORSCHUNG WALD

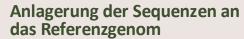
MOLECULAR ECOLOGY

Evidence of divergent selection for drought and cold tolerance at landscape and local scales in *Abies alba* Mill. in the French Mediterranean Alps

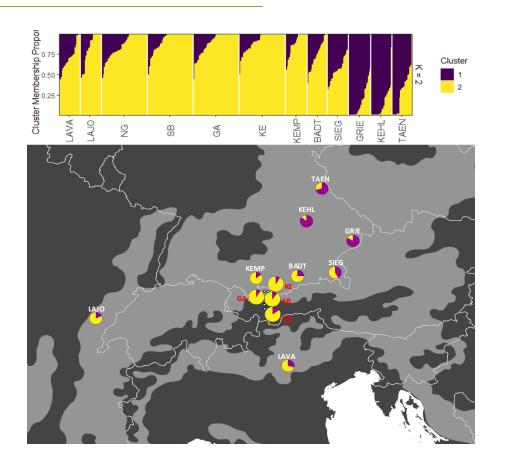
Anna M. Roschanski, Katalin Csilléry, Sascha Liepelt 🔀 Sylvie Oddou-Muratorio, Birgit Ziegenhagen, Frédéric Huard, Kristian K. Ullrich, Dragos Postolache, Giovanni G. Vendramin, Bruno Fady

First published: 16 December 2015 | https://doi.org/10.1111/mec.13516 | Citations: 54




Auswahl von 175 Kandidatengenen für Dürre- und Frosttoleranz

Library Prep und Sequenzierung



Assoziationsgenetik: Populationsstruktur muss berücksichtigt werden!

- Spiegelt Rückwanderungsgeschichte wider
- Keine ausgeprägte Struktur innerhalb der Saatgutbestände
- Deckt sich mit Mikrosatellitenuntersuchungen in der Region

Signaturen der Anpassung?

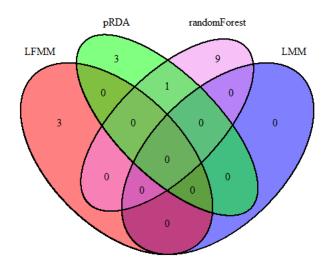
Regional

Genotyp-Umwelt-Assoziation:

6 SNPs mit Niederschlagsgradienten assoziiert

Lokal

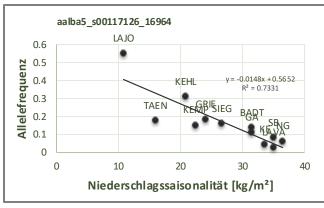
Genotyp-Phänotyp-Assoziation:

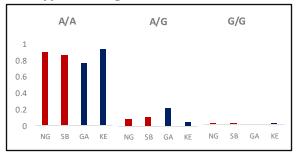

9 SNPs mit
Erholungsfähigkeit und
relativer Resilienz von
Extremfrost assoziiert

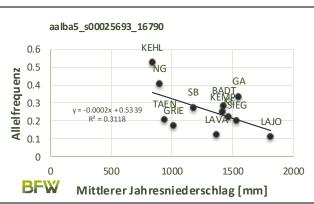
Multilocus-Ansätze identifizieren mehr SNPs: Lokale Anpassung geschieht durch die Interaktion vieler Gene

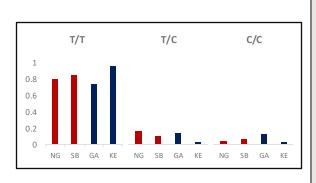
<u>Trockenresistenz</u> ist ein wesentlich komplexeres Merkmal als <u>Frosthärte</u>

Wir benötigen deutlich mehr genetische Marker (SNPs) für die Erklärung phänotypischer Variation von komplexen Merkmalen!

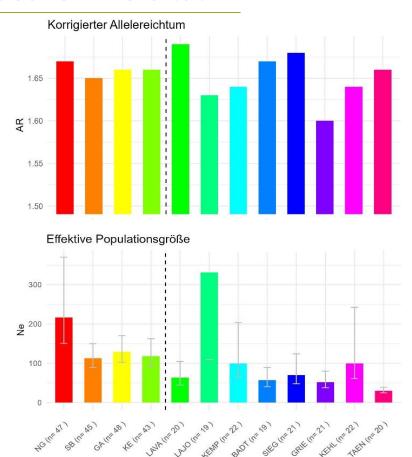

→ TannenGen WF-Projekt




Anzahl signifikanter SNPs pro Methode


Lokale Anpassung?

Genotypen Häufigkeit Landeck vs. Außerfern



- Nur subtile Unterschiede der Genotypen-Verteilung auf kontrastierenden Standorten
- Interkation vieler Gene steuert lokale Anpassung
- Mehr Individuen und SNPs nötig für Nachweis

Genetische Diversität?

Keine Reduktion der genetischen Diversität in den Inneralpen zu beobachten

Erhöhte effektive Populationsgröße (Ne) in Niedergallmigg -> Anpassungsfähigkeit!

Eignung als Saatgutquelle - Zusammenfassung

- Keine Anzeichen für reduzierte Diversität in inneralpinen Tannenbeständen
- Niederschlagsmenge limitierender Faktor in NG & (SB) → <u>Selektionsdruck</u>
- In Kombination mit genügend stehender Diversität → Lokale Anpassung – Indizien sprechen dafür
- Bewirtschaftung: Sicherung großflächiger
 Verjüngung in NG für Erhalt der effektiven
 Populationsgröße Anpassungsvermögen

Lokale Herkünfte aus niederschlagsarmen Wuchsgebieten stellen im Klimawandel eine Alternative zu weit südlich gelegenen Saatgutquellen dar.

Dank an das Projektteam und die Fördergeber

- Jonathan Feichter
- Johanna Reich
- Timm Horna
- Jonas Schweiger
- Erik Szamosvari
- Fatima Al-Awadi
- Berthold Heinze

Kontakt

Bundesforschungszentrum für Wald

Austria, 1131 Wien Seckendorff-Gudent-Weg 8

Tel.: +43 1 878 38-0 direktion@bfw.gv.at www.bfw.gv.at

Folgen Sie uns

- www.facebook.com/BundesforschungszentrumWald
- www.instagram.com/bundesforschungszentrum_wald
- www.youtube.com/waldforschung
- in www.linkedin.com/company/ bundesforschungszentrum-wald-bfw

BFW -BILDUNG FORSCHUNG WALD

